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1. Comparison between 𝑸𝐄𝐃𝐋 and 𝑸𝐌 in time space 

There are two common definitions of the EDL charge1, 2, including the total 

diffuse charge 𝑄EDL(𝜏), and the electrode surface charge 𝑄M(𝜏), as shown in FIG 

S1. 𝑄EDL(𝜏) is calculated from the integration of the net ionic charge from the 

Helmholtz plane to the middle plane, while 𝑄M(𝜏) is calculated by the Gauss’s 

law. Taking the double-blocking closed cells (DBCC) for example, we compare 

the dimensionless 𝑄EDL(𝜏) (solid line) and 𝑄M(𝜏) (dot-dashed line) at an applied 

voltage 𝑈M = −1 (25 mV) for an electrolyte film with a thickness of 2𝐿 = 10.4𝜆D 

(100 nm for the 1mM solution), as shown in FIG S2. These two EDL charging 

dynamic curves show the same trend, and eventually increase to the same 

equilibrium value because the electric field is close to zero at the middle plane. 

It should be noted that the initial value of 𝑄M(𝜏) does not start from zero because 

the initial electric field departs from zero. 

 

FIG S1. Two definitions of EDL charge, the electrode surface charge 𝑄M(𝜏) by Gauss’s 

law and total diffuse charge 𝑄EDL(𝜏) by integrating the ionic charge from the Helmholtz 

plane to the middle plane. 



 

 

 

FIG S2. Taking the double-blocking closed cell as an example, we compare 𝑄EDL and 

𝑄M in terms of EDL charging behavior in (a) and electric potential distribution at a 

steady state in (b). Model parameters are 𝑐0 = 1 × 10
−3 mol L−1, 𝐷± = 1 ×

10−11 m2 s−1, 𝛿HP = 0.3 nm,𝑈M = −1, 2𝐿 = 100 nm , and the corresponding reference 

values are 𝜆D ≈ 9.63 nm, 𝑡ref = 𝜆𝐷
2 𝐷+⁄ = 9.27 × 10−7 s, 𝑈ref = 𝑅𝑇 𝐹⁄ = 25 mV. 



 

 

2. Double layer charging dynamics in terms of 𝑸𝐌 for the SBOC 

In FIG S3, we plot the double layer charging dynamics in terms of the electrode 

surface charge 𝑄M. The corresponding 𝑄EDL is shown in FIG (2) of the main text. 

 
FIG S3. For the single-blocking open cells, we compare the time evolution of the 

electrode surface charge 𝑄M for the nonlinear (line) and linear (dash line) PNP theory 

at (a) different applied voltages and (b) thicknesses of the electrolyte, respectively. 

Model parameters are 𝑐0 = 1 × 10
−3 mol L−1, 𝐷± = 1 × 10

−11 m2 s−1, 𝛿HP = 0.3 nm. 



 

 

3. Comparison of 𝑸𝐄𝐃𝐋 between the DBCC and the SBOC 

 

FIG S4. Comparison of 𝑄EDL between (a) the DBCC and (b) the SBOC at different 𝑈M. 

(c) Comparison of 𝐶+,mid
eq

 of DBCC as function of 𝑈M between the analytical (solid line) 

and the numerical (circle) results for different electrolyte film thicknesses. Model 

parameters are 𝑐0 = 1 × 10
−3 mol L−1, 𝐷± = 1 × 10

−11 m2 s−1, 𝛿HP = 0.3 nm. 

In the main text, we have introduced the single-blocking open cells (SBOC) and 

double-blocking closed cell (DBCC). Here, we depict the double layer charging 

dynamics in terms of 𝑄EDL for the DBCC and the SBOC, as shown in FIG S4(a-

b), respectively. Firstly, the EDL charges faster when the nonlinear PNP theory 

is used for both the DBCC and the SBOC, because it gives a larger ion flux under 



 

 

the same driving force since sinh 𝜁 > 𝜁. Secondly, the equilibrium value of the 

total diffuse charge, 𝑄EDL
eq

= 𝑄EDL(∞), for the DBCC is much smaller than the 

SBOC. This is because the number of ions inside the DBCC is limited and kept 

constant, while the SBOC is an open system connected to a reservoir. Herein, 

FIG S4 (c) shows the steady state cation’s concentration at the middle plane, 

𝐶+,mid
eq

, for the DBCC as a function of 𝑈M for different electrolyte film thicknesses. 

The 𝐶+,mid
eq

 can described by the following approximate analytical expression3, 

𝐶+,mid
eq

= A − √A2 − 1, (S1) 

where, 

A = 1 + 8(
𝜆𝐷
𝐿
)
2

[sinh (
𝑈HP
eq

4
)]

4

, (S2) 

with 𝜆𝐷  being the Debye length, given by 𝜆𝐷 = √𝜀S𝑅𝑇/(2𝐹2𝑐0), 𝐿 the electrolyte 

thickness from the Helmholtz plane (HP) to the middle plane, and 𝑈HP
eq

 the 

dimensionless steady-state potential at the HP, calculated using the Poisson-

Boltzmann (PB) equation, 

𝜕2𝑈

𝜕𝑋2
= sinh𝑈, (S3) 

coupled with the left boundary condition, 

𝑈HP
eq
= 𝑈M +

𝛿HP
𝜆𝐷

𝜀S
𝜀HP

𝜕𝑈

𝜕𝑋
(𝑋 = 0). (S4) 

We obtain the relationship between the surface applied voltage 𝑈M and the 𝑈HP
eq

, 

𝑈M = 𝑈HP
eq
− 2

𝛿HP
𝜆𝐷

𝜀𝑆
𝜀HP

sinh(
𝑈HP
eq

2
). (S5) 

As expected, FIG S4 (c) shows that 𝐶+,mid
eq

 decreases with increasing 𝑈M. This can 

be attributed to the fact that more counterions move to the electrode surface to 

counter the electrode surface charge. Increasing the electrolyte thickness will 

diminish the trend. The approximate analytical expression (S1) can explain this 



 

 

phenomenon very well. When the electrolyte thickness increases to infinity, 2𝐿 →

∞, then 𝐶+,mid
eq

= 1, at any applied voltage, as shown in the dashed line in FIG S4 

(c). It means that the DBCC is equivalent to the SBOC when 2𝐿 → ∞. Thirdly, 

compared with the DBCC, the SBOC shows a nonmonotonic charging behavior 

when the nonlinear PNP theory is used, which is discussed in the main text.  



 

 

4. Time evolution of net charge density distribution in the SBOC 

 

FIG S5. (a) Time evolution of the net charge density distribution in the SBOC; (b) 

Schematic diagram of physical processes. Model parameters are 𝐿 = 5 nm,𝑈M = −20,

𝑐0 = 1 × 10
−3 mol L−1, 𝐷± = 1 × 10

−11 m2 s−1, 𝛿HP = 0.3 nm. 

FIG S5 (a) shows the time evolution of net charge density, 𝜌 = 𝐶+ − 𝐶− , 

distribution in the SBOC at 𝐿 = 5 nm,𝑈M = −20. A schematic diagram of physical 

processes is shown in FIG S5 (b). This result is calculated by the linear PNP 

theory. 



 

 

5. Double layer charging dynamics in terms of 𝑸𝐄𝐃𝐋 for the single reactive 

open cell 

The influence of an electrochemical reaction on the EDL charging is examined 

by considering a single-reactive open cell, which involves a metal-deposition 

reaction at left boundary, 𝑋 = 0, as show in FIG S6 (a), 

M+ + e− ↔ M (S6) 

where M+ is the metal ion, and M the metal atom. The kinetics of this charge 

transfer reaction can be described using the Frumkin-Butler-Volmer (FBV) 

theory, 

𝑗𝑐𝑡 = 𝑘0,𝑐𝑡 (exp (
𝛼𝐹𝜂

𝑅𝑇
) − 𝐶+,HP exp (−

(1 − 𝛼)𝐹𝜂

𝑅𝑇
)) (S7) 

where 𝑘0,𝑐𝑡 is the rate constant of charge transfer, 𝐶+,HP the concentration of M+ 

at the Helmholtz plane (HP), 𝛼 the charge transfer coefficient and 𝜂 = 𝐸M − 𝜙HP −

𝐸eq the overpotential with 𝐸eq being the equilibrium potential. 𝜙HP the electric 

potential at the HP. Settings and parameters are the same as those in the SBOC 

case. The nonlinear and non-monotonic effects are also observed in this single-

reactive open cell, and the mere difference is that 𝑄EDL(𝜏) decreases at larger rate 

constant of charge transfer 𝑘0,𝑐𝑡, as shown in FIG S6(b). This is because the metal 

deposition reaction consumes cations, thus lowering 𝑄EDL . Regime of 

nonlinearity of the PNP theory and non-monotonic EDL charging dynamics, as 

shown in FIG S6 (c-d), respectively, are basically the same as in the case of SBOC. 



 

 

 

FIG S6. (a) Schematic diagram of the single-reactive open cell with one side in contact 

with a non-blocking electrode, and the other side connected to a reservoir of electrolyte 

solution; (b) The charging dynamics of nanoconfined electrolytes in terms of the total 

diffuse charge 𝑄EDL(𝜏) for the nonlinear (line) and linear PNP theory (dash line) at 

different rate constants of the charge transfer reaction; (c) Regime of nonlinearity of 

the PNP theory. (d) Regime of non-monotonic EDL charging dynamics. Model 

parameters are 𝑐0 = 1 × 10
−3 mol L−1, 𝐷± = 1 × 10

−11 m2 s−1, 𝛿HP = 0.3 nm , and the 

corresponding references values are 𝜆𝐷 ≈ 9.63 nm, 𝑡𝑟𝑒𝑓 = 𝜆𝐷
2 𝐷+⁄ = 9.27 × 10−7 s, 𝑈𝑟𝑒𝑓 =

𝑅𝑇 𝐹⁄ = 25 mV. 

  



 

 

6. Analytical solution of EIS at PZC 4, 5: 

Herein, the ion size effect is ignored, using 𝛾 = 0, and the linear PNP equation 

can be simplified to, 

𝜕

𝜕𝜏
[
𝐶+
𝐶−
0
] =

𝜕

𝜕𝑋

{
 
 

 
 
𝜕𝐶+
𝜕𝑋

+ 𝐶+
𝜕𝑈

𝜕𝑋
𝜕𝐶−
𝜕𝑋

− 𝐶−
𝜕𝑈

𝜕𝑋
𝜕𝑈

𝜕𝑋 }
 
 

 
 

+ [

0
0

1

2
(𝐶+ − 𝐶−)

]. (S8) 

Applying a perturbation to (S8), we obtain, 

𝑗𝜔nd [
𝐶̃+
𝐶̃−
0

] =
𝜕

𝜕𝑋

{
  
 

  
 
𝜕𝐶̃+
𝜕𝑋

+ 𝐶+
0
𝜕𝑈̃

𝜕𝑋
+ 𝐶̃+

𝜕𝑈0

𝜕𝑋
𝜕𝐶̃−
𝜕𝑋

− 𝐶−
0
𝜕𝑈̃

𝜕𝑋
− 𝐶̃−

𝜕𝑈0

𝜕𝑋
𝜕𝑈̃

𝜕𝑋 }
  
 

  
 

+ [

0
0

1

2
(𝐶̃+ − 𝐶̃−)

] (S9) 

where the over-tilde marks a quantity in the frequency domain and 𝜔𝑛𝑑 is the 

dimensionless angular frequency with respect to 
𝐷+

𝜆𝐷
2 . Due to the initial conditions 

𝐶+
0 = 𝐶−

0 = 1, 𝑈0 = 0, (S9) can be written as, 

𝑗𝜔𝑛𝑑 [
𝐶̃+
𝐶̃−
0

] =
𝜕

𝜕𝑋

{
  
 

  
 
𝜕𝐶̃+
𝜕𝑋

+
𝜕𝑈̃

𝜕𝑋
𝜕𝐶̃−
𝜕𝑋

−
𝜕𝑈̃

𝜕𝑋
𝜕𝑈̃

𝜕𝑋 }
  
 

  
 

+ [

0
0

1

2
(𝐶̃+ − 𝐶̃−)

] (S10) 

The (S10) can be solved, 



 

 

𝐶̃+ = −𝑦1 + 𝑦2 

𝑦1 = 𝛼1sinh(√𝜆1𝑋) + 𝛼2cosh(√𝜆1𝑋) 

𝜆1 = 𝑗𝜔nd + 1 

𝐶̃− = 𝑦1 + 𝑦2 

𝑦2 = 𝛽1sinh(√𝜆2𝑋) + 𝛽2cosh(√𝜆2𝑋) 

𝜆2 = 𝑗𝜔
nd 

𝐶̃+ = −𝛼1sinh(√𝜆1𝑋) − 𝛼2cosh(√𝜆1𝑋) + 𝛽1sinh(√𝜆2𝑋) + 𝛽2cosh(√𝜆2𝑋) 

𝜕𝐶̃+
𝜕𝑋

= −𝛼1√𝜆1cosh(√𝜆1𝑋) − 𝛼2√𝜆1sinh(√𝜆1𝑋) + 𝛽1√𝜆2cosh(√𝜆2𝑋)

+ 𝛽2√𝜆2sinh(√𝜆2𝑋) 

𝐶̃− = 𝛼1sinh(√𝜆1𝑋) + 𝛼2cosh(√𝜆1𝑋) + 𝛽1sinh(√𝜆2𝑋) + 𝛽2cosh(√𝜆2𝑋) 

𝜕𝐶̃−
𝜕𝑋

= 𝛼1√𝜆1cosh(√𝜆1𝑋) + 𝛼2√𝜆1sinh(√𝜆1𝑋) + 𝛽1√𝜆2cosh(√𝜆2𝑋)

+ 𝛽2√𝜆2sinh(√𝜆2𝑋) 

𝜕𝑈̃

𝜕𝑋
=
𝛼1

√𝜆1
cosh(√𝜆1𝑋) +

𝛼2

√𝜆1
sinh(√𝜆1𝑋) + 𝑘1 

𝑈̃ =
𝛼1
𝜆1
sinh(√𝜆1𝑋) +

𝛼2
𝜆1
cosh(√𝜆1𝑋) + 𝑘1𝑋 + 𝑘2 

where, 

𝜕𝐶̃+
𝜕𝑋

|
𝑋 = 0

= −𝛼1√𝜆1 + 𝛽1√𝜆2 
𝜕𝐶̃−
𝜕𝑋

|
𝑋 = 0

= 𝛼1√𝜆1 + 𝛽1√𝜆2 

𝜕𝐶̃+
𝜕𝑋

|
𝑋 = 2𝐿̃

= −𝛼1√𝜆1cosh(√𝜆12𝐿̃) − 𝛼2√𝜆1sinh(√𝜆12𝐿̃) + 𝛽1√𝜆2cosh(√𝜆22𝐿̃)

+ 𝛽2√𝜆2sinh(√𝜆22𝐿̃) 



 

 

𝜕𝐶̃−
𝜕𝑋

|
𝑋 = 2𝐿̃

= 𝛼1√𝜆1cosh(√𝜆12𝐿̃) + 𝛼2√𝜆1sinh(√𝜆12𝐿̃) + 𝛽1√𝜆2cosh(√𝜆22𝐿̃)

+ 𝛽2√𝜆2sinh(√𝜆22𝐿̃) 

𝜕𝑈̃

𝜕𝑋
|
𝑋 = 0

=
𝛼1

√𝜆1
+ 𝑘1 

𝜕𝑈̃

𝜕𝑋
|
𝑋 = 𝐿̃

=
𝛼1

√𝜆1
cosh(√𝜆12𝐿̃) +

𝛼2

√𝜆1
sinh(√𝜆12𝐿̃) + 𝑘1 

𝑈̃ |
𝑋 = 0

=
𝛼2
𝜆1
+ 𝑘2 𝑈̃ |

𝑋 = 𝐿̃
=
𝛼1
𝜆1
sinh(√𝜆12𝐿̃) +

𝛼2
𝜆1
cosh(√𝜆12𝐿̃) + 𝑘1𝐿̃ + 𝑘2 

where 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑘1, 𝑘2 are determined by the boundary conditions.  

For the DBCC, at 𝑋 = 0, ∇𝐶̃+ + ∇𝑈̃ = 0，we obtain, 

−𝛼1√𝜆1 + 𝛽1√𝜆2 +
𝛼1

√𝜆1
+ 𝑘1 = 0, 

and ∇𝐶̃− − ∇𝑈̃ = 0, we obtain, 

𝛼1√𝜆1 + 𝛽1√𝜆2 −
𝛼1

√𝜆1
− 𝑘1 = 0. 

Solving the above two equations, then we can obtain, 

𝛽1 = 0, 𝑘1 = 𝛼1√𝜆1 −
𝛼1

√𝜆1
. 

And 𝑈̃ = −𝑈̃M + 𝑟𝑐∇𝑈̃ at 𝑥 = 0, we can obtain, 

𝛼2

𝜆1
+ 𝑘2 = −𝑈̃M + 𝑟𝑐 (

𝛼1

√𝜆1
+ 𝑘1), 

with 𝑟𝑐 =
𝐶GC
0

𝐶H
=

𝛿H

𝜆𝐷

𝜖s

𝜖H
, then we can obtain, 

𝑘2 = −𝑈̃M + 𝑟𝑐𝛼1√𝜆1 −
𝛼2

𝜆1
, 

At 𝑥 = 2𝐿̃, ∇𝐶̃+ + ∇𝑈̃ = 0, we obtain, 

−𝛼1√𝜆1cosh(√𝜆12𝐿̃) − 𝛼2√𝜆1sinh(√𝜆12𝐿̃) + 𝛽1√𝜆2cosh(√𝜆22𝐿̃) + 𝛽2√𝜆2sinh(√𝜆22𝐿̃) +

𝛼1

√𝜆1
cosh(√𝜆12𝐿̃) +

𝛼2

√𝜆1
sinh(√𝜆12𝐿̃) + 𝑘1 = 0, 

and ∇𝐶̃− − ∇𝑈̃ = 0, we obtain, 



 

 

𝛼1√𝜆1cosh(√𝜆12𝐿̃) + 𝛼2√𝜆1sinh(√𝜆12𝐿̃) + 𝛽1√𝜆2cosh(√𝜆22𝐿̃) + 𝛽2√𝜆2sinh(√𝜆22𝐿̃) −

𝛼1

√𝜆1
cosh(√𝜆12𝐿̃) −

𝛼2

√𝜆1
sinh(√𝜆12𝐿̃) − 𝑘1 = 0, 

Then we can obtain 

𝛼1 = 𝑈̃M
sinh(√𝜆12𝐿̃)

(2𝑟𝑐√𝜆1+2𝐿̃√𝜆1−
2𝐿̃

√𝜆1
)sinh(√𝜆12𝐿̃)+

2

𝜆1
(cosh(√𝜆12𝐿̃)−1)

, 

𝛼2 = 𝛼1
1−cosh(√𝜆12𝐿̃)

sinh(√𝜆12𝐿̃)
= 𝑈̃M

1−cosh(√𝜆12𝐿̃)

(2𝑟𝑐√𝜆1+2𝐿̃√𝜆1−
2𝐿̃

√𝜆1
)sinh(√𝜆12𝐿̃)+

2

𝜆1
(cosh(√𝜆12𝐿̃)−1)

. 

when the EDL charge refers to 𝑄̃EDL, 

𝐽EDL = −𝑗𝜔
nd∫ (𝐶̃+ − 𝐶̃−)

𝐿̃

0

𝑑𝑋

= 2𝑗𝜔nd∫ (𝛼1sinh(√𝜆1𝑋) + 𝛼2cosh(√𝜆1𝑋))𝑑𝑋
𝐿̃

0

= 2𝑗𝜔nd(
𝛼1

√𝜆1
cosh(√𝜆1𝑋) +

𝛼2

√𝜆1
sinh(√𝜆1𝑋)) |

𝐿̃
0

= 2𝑗𝜔nd (
𝛼1

√𝜆1
cosh(√𝜆1𝐿̃) +

𝛼2

√𝜆1
sinh(√𝜆1𝐿̃) −

𝛼1

√𝜆1
)

= 2𝑗𝜔nd (𝑈̃M
sinh(√𝜆12𝐿̃)

A

1

√𝜆1
cosh(√𝜆1𝐿̃)

+ 𝑈̃M
1 − cosh(√𝜆12𝐿̃)

A

1

√𝜆1
sinh(√𝜆1𝐿̃)

− 𝑈̃M
sinh(√𝜆12𝐿̃)

A

1

√𝜆1
) 

(S11) 

with 

A = (2𝑟𝑐√𝜆1 + 2𝐿̃√𝜆1 −
2𝐿̃

√𝜆1
) sinh(√𝜆12𝐿̃) +

2

𝜆1
(cosh(√𝜆12𝐿̃) − 1) 

and the impedance is calculated, 



 

 

𝑍EDL
nd =

𝑈M

𝐽EDL

=
1

2𝑗𝜔nd (
sinh(√𝜆12𝐿̃)

A
1

√𝜆1
cosh(√𝜆1𝐿̃) +

1 − cosh(√𝜆12𝐿̃)
A

1

√𝜆1
sinh(√𝜆1𝐿̃) −

sinh(√𝜆12𝐿̃)
A

1

√𝜆1
)

=
1

2𝑗𝜔nd

A√𝜆1

(1 − cosh(√𝜆12𝐿̃)) sinh(√𝜆1𝐿̃) − (1 − cosh(√𝜆1𝐿̃)) sinh(√𝜆12𝐿̃)

=
1

2𝑗𝜔nd

(2𝑟𝑐𝜆1 + 2𝐿̃𝜆1 − 2𝐿̃)tanh(√𝜆12𝐿̃) +
2

√𝜆1
(1 − sech(√𝜆12𝐿̃))

(sech(√𝜆12𝐿̃) − 1)sinh(√𝜆1𝐿̃) − (1 − cosh(√𝜆1𝐿̃)) tanh(√𝜆12𝐿̃)
 

(S12) 

When the EDL charge refers to 𝑄̃M, 

𝐽M = 𝑗𝜔
nd
𝐷

𝜆𝐷
2

𝜖S𝑅𝑇

𝐹2𝑐0𝐷

𝑑𝑈

𝑑𝑋
|
𝑥 = 0+

= 2𝑗𝜔𝑛𝑑
𝑑𝑈

𝑑𝑋
|
𝑋 = 0+

 

= 2𝑗𝜔nd (
𝛼1

√𝜆1
+ 𝛼1√𝜆1 −

𝛼1

√𝜆1
) = 2𝑗𝜔𝑛𝑑𝛼1√𝜆1 

= 2𝑗𝜔nd𝑈̃M
sinh(√𝜆12𝐿̃)

(2𝑟𝑐√𝜆1 + 2𝐿̃√𝜆1 −
2𝐿̃

√𝜆1
) sinh(√𝜆12𝐿̃) +

2
𝜆1
(cosh(√𝜆12𝐿̃) − 1)

√𝜆1 

(S13) 

and the impedance is calculated, 

𝑍M
nd =

𝑈̃M

𝐽M

=
1

2𝑗𝜔nd

(2𝑟𝑐√𝜆1 + 2𝐿̃√𝜆1 −
2𝐿̃

√𝜆1
) sinh(√𝜆12𝐿̃) +

2
𝜆1
(cosh(√𝜆12𝐿̃) − 1)

√𝜆1sinh(√𝜆12𝐿̃)

=
1

2𝑗𝜔nd

(2𝑟𝑐𝜆1 + 2𝐿̃𝜆1 − 2𝐿̃)sinh(√𝜆12𝐿̃) +
2

√𝜆1
(cosh(√𝜆12𝐿̃) − 1)

𝜆1sinh(√𝜆12𝐿̃)
 

(S14) 

For the SBOC, in the similar way, we can obtain, 

𝛼1 = −
𝑈̃M

𝑟𝑐√𝜆1 +
tanh(√𝜆1𝐿̃)

𝜆1
+ 𝐿̃ (√𝜆1 −

1

√𝜆1
)

 



 

 

𝛼2 =
𝑈̃Mtanh(√𝜆1𝐿̃)

𝑟𝑐√𝜆1 +
tanh(√𝜆1𝐿̃)

𝜆1
+ 𝐿̃ (√𝜆1 −

1

√𝜆1
)

 

𝛽1 = 𝛽2 = 0 

𝑘1 = (√𝜆1 −
1

√𝜆1
)𝛼1 

𝑘2 = −(√𝜆1 −
1

√𝜆1
)𝛼1𝐿 

𝜕𝑈̃

𝜕𝑋
=
𝛼1

√𝜆1
cosh(√𝜆1𝑋) +

𝛼2

√𝜆1
sinh(√𝜆1𝑋) + 𝑘1 

When the EDL charge refers to 𝑄̃EDL, the impedance is calculated, 

𝑍EDL
nd =

𝑈̃M

𝐽EDL
=

1

2𝑗𝜔nd

𝑟𝑐𝜆1 +
tanh(√𝜆1𝐿̃)

√𝜆1
+ 𝐿̃(𝜆1 − 1)

1 − sech(√𝜆1𝐿̃)
 

(S15) 

When the EDL charge refers to 𝑄̃M, and the impedance is calculated, 

𝑍M
nd =

𝑈̃M

𝐽EDL
=

1

2𝑗𝜔nd

𝑟𝑐𝜆1 +
tanh(√𝜆1𝐿̃)

√𝜆1
+ 𝐿̃(𝜆1 − 1)

𝜆1
 

(S16) 

where 𝑍nd is the dimensionless form with respect to 
2𝜆𝐷

2

𝐷+𝐶𝐺𝐶
, 𝑟c = 𝐶GC

0 /𝐶H the ratio 

between the Gouy-Chapman capacitance at PZC, 𝐶GC
0 =

𝜖𝑠

𝜆𝐷
 and the Helmholtz 

capacitance, 𝐶H =
𝜖HP

𝛿HP
, and 𝜔𝑛𝑑 = 𝜔

𝜆𝐷
2

𝐷+
. Take the SBOC for example, whose 

dimensional form is expressed as, 

𝑍EDL =
1

𝑗𝜔𝐶H

𝜆1

1 − sech(√𝜆1𝐿 𝜆𝐷⁄ )
+

1

𝑗𝜔𝐶GC
0

tanh(√𝜆1𝐿 𝜆𝐷⁄ )

√𝜆1
+
𝐿
𝜆𝐷
(𝜆1 − 1)

1 − sech(√𝜆1𝐿 𝜆𝐷⁄ )
. 

(S17) 

In the low frequency range, namely, 𝜔 → 0 , 𝜆1 ≈ 1 , 1 − sech(𝐿 𝜆𝐷⁄ ) ≈ 1 , and 



 

 

tanh(𝐿 𝜆𝐷⁄ ) ≈ 1. Then Eq. (S17) is asymptotic to  

𝑍EDL =
1

𝑗𝜔
(
1

𝐶H
+

1

𝐶GC
0 ), (S18) 

a capacitive behavior corresponding to the equilibrium EDL capacitance. In the 

high frequency range, namely, 𝜔 → ∞, 𝜆1 ≈ 𝑗𝜔
𝜆𝐷
2

𝐷+
, 1 − sech(√𝜆1𝐿 𝜆𝐷⁄ ) ≈ 1, 𝜆1 − 1 ≈

𝜆1, and 
tanh(√𝜆1𝐿 𝜆𝐷⁄ )

√𝜆1
≈ 0. Then Eq. (S17) is asymptotic to, 

𝑍EDL =
𝜆𝐷
2

𝐶H𝐷+
+

𝜆𝐷𝐿

𝐶GC
0 𝐷+

≈
𝐿

2𝐹2𝑐0𝐷+
𝑅𝑇

=
𝐿

𝜎𝑠
, (S19) 

a pure resistance behavior, where 𝜎s =
2𝐹2𝑐0𝐷+

𝑅𝑇
 is the electrical conductivity of the 

bulk electrolyte. 

When the EDL charge refers to the metal surface charge, the impedance reads, 

𝑍M =
1

𝑗𝜔𝐶H
+

1

𝑗𝜔𝐶GC
0

tanh(√𝜆1𝐿 𝜆𝐷⁄ )

√𝜆1
+
𝐿
𝜆𝐷
(𝜆1 − 1)

𝜆1
. 

(S20) 

In the low frequency range, namely, 𝜔 → 0, 𝜆1 ≈ 1, and tanh(𝐿 𝜆𝐷⁄ ) ≈ 1. Then Eq. 

(S20) is asymptotic to  

𝑍M =
1

𝑗𝜔
(
1

𝐶H
+

1

𝐶GC
0 ), (S21) 

which is the same as 𝑍EDL in the low frequency range. In the high frequency range, 

namely, 𝜔 → ∞, 
tanh(√𝜆1𝐿 𝜆𝐷⁄ )

√𝜆1
≈ 0. Then Eq. (S20) is asymptotic to,  

𝑍M =
1

𝑗𝜔𝐶H
+

1

𝑗𝜔𝐶GC
0

1

𝜆𝐷
𝐿
(1 +

𝐷+
𝑗𝜔𝜆𝐷

2 )
=

1

𝑗𝜔𝐶H
+

1

𝐶GC
0 𝐷+
𝜆𝐷𝐿

+ 𝑗𝜔
𝜖s
𝐿

≈
1

1

𝑅ele
pzc + 𝑗𝜔𝐶geo

, 
(S22) 

where 𝑅ele
pzc

=
𝜆𝐷𝐿

𝐶GC
0 𝐷+

=
𝐿

𝜎s
 is the electrolyte resistance at the PZC and 𝐶geo =

𝜖s

𝐿
 the 

geometric capacitance of the electrolyte.  



 

 

7. Comparison of EIS between linear PNP and nonlinear PNP theory for the 
SBOC 

 
FIG S7. For the SBOC, at the potential of zero charge, we compare numerical EIS 

results between the nonlinear PNP (solid line) and linear PNP theory (dashed line). 

Model parameters are: 𝐿 = 100 nm,𝑈M
dc = 0, 𝑐0 = 1 × 10

−3 mol L−1, 𝐷± = 1 ×

10−11 m2 s−1, 𝛿HP = 0 nm. 



 

 

8. EIS response of the DBCC 

 

FIG S8. For the DBCC, comparison between the EIS calculated from the total diffuse 

charge, denoted as 𝑍EDL , and that from the electrode surface charge, 𝑍M , at the 

potential of zero charge, 𝑈M
dc = 0 . Model parameters are 𝑐0 = 1 × 10

−3 mol L−1, 𝐷± =

1 × 10−11 m2 s−1, 𝛿HP = 0 nm, 𝐸M = 2.5 × 10
−3 sin𝜔𝑡  V, 𝐸eq = 𝐸pzc = 0. Frequency range, 

1 × 106~1 × 10−1 Hz. 

  



 

 

9. EIS response of the single blocking closed cell 

We consider a case with a non-blocking metal on the right side, namely, the 

single-blocking closed cell, as shown in FIG S9(a). A charging transfer occurs at 

the 𝑋 = 𝐿, 

M ↔ M+ + e− (S23) 

where M+  is the metal ion, and M  the metal atom. This charge transfer is 

described using the FBV theory, 

𝑗𝑐𝑡 = 𝑘0,𝑐𝑡 (exp (
𝛼𝐹𝜂

𝑅𝑇
) − 𝐶+,L exp (−

(1 − 𝛼)𝐹𝜂

𝑅𝑇
)) (S24) 

where 𝑘0,𝑟𝑐𝑡 is the rate constant of charge transfer, 𝐶+,L the concentration of M+ 

at the right boundary, 𝛼 the charge transfer coefficient and 𝜂 = −𝐸M − 𝜙HP − 𝐸eq 

the overpotential with 𝐸eq being the equilibrium potential and −𝐸M the electrode 

potential at the right electrode. The other conditions are the same as those in 

the SBOC case. FIG S9(b) compares the EIS numerically calculated at different 

𝑘0,𝑐𝑡 at the potential of zero charge, 𝑈M
dc = 0, 𝐿 = 100 nm, 𝛿HP = 0 nm. We notice that 

the EIS consists of two semicircles in high and intermediate frequency range, 

respectively, and a vertical line in low frequency range. With increasing 𝑘0,𝑐𝑡, the 

intermediate-frequency semicircle associated with the charging transfer 

decreases. The high-frequency semicircle corresponds to the electrolyte 

resistance in parallel with the geometric capacitance, and the low-frequency 

vertical line corresponds to the equilibrium EDL capacitance. 



 

 

 

FIG S9. (a) Schematic diagram of the single blocking closed cell with one side in 

contact with a blocking electrode, and the other side connected to a non-blocking 

electrode; (b) The EIS of single blocking closed cell at different rate constant of charge 

transfer 𝑘0,𝑐𝑡, at the potential of zero charge, 𝑈M
dc = 0, 𝐿 = 100 nm, 𝛿HP = 0.3 nm. Model 

parameters are 𝑐0 = 0.1 mol L
−1, 𝐷± = 5 × 10

−12 m2 s−1 , 𝐸M = 2.5 × 10
−3 sin𝜔𝑡  V , 𝐸eq =

𝐸pzc = 0. Frequency range is 1 × 107~1 × 10−1 Hz. 
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